导电塑料绝大多数是本来是绝缘的材料里掺加高浓度的丝状炭黑和完全焦化的化合物制得的。用体积电阻率和表面电阻率同样足以描述它们的电性能。这种依仗炭丝网络结构的电性能取决于制备它们的方法,也随机械弯曲和接触庄力的改变而变化。
来源编辑
我们通常认为塑料导电性极差,被用来制作导线的绝缘外套。但澳大利亚的研究人员发现,当将一层极薄的金属膜覆盖至一层塑料层之上,并借助离子束将其混入高分子聚合体表面,将可以生成一种价格低、强度高、韧性好且可导电的塑料膜。
取得这一成果的小组由两位来自澳大利亚昆士兰大学的专家领导,分别是保罗·麦里迪斯(PaulMeredith)教授和助理教授本·鲍威尔(Ben Powell),以及一位来自新南威尔士大学的专家亚当·米考林(AdamMicolich)教授。他们的这一成果已经发表于《ChemPhysChem》杂志。该项研究所依据的实验由前昆士兰大学博士生安德鲁·斯蒂芬森(AndrewStephenson)进行。离子束技术在微电子工业领域被广泛运用来测试半导体,如硅片的导电性能。但将这种技术应用到塑料膜材料的尝试是从上世纪80年代才开始起步的,一直进展不大。麦里迪斯教授介绍说:“这个小组所作的工作,简单来说就是借助离子束技术改变塑料膜材料的性质,使其具备类似金属的功能,能够向导线本身那样导电,甚至可以变成超导体,当温度低到一定程度时电阻变为零。
导电塑料综合了金属的导电性(即在材料两端加上一定电压,在材料中有电流通过)和塑料的各种特性(即材料分子是由许多小的、重复出现的结构单元组成的)。要想赋予聚合物以导电性,在聚合物主链中就必须引入π共轭体系,构成π电子系重叠的高分子,高分子的有规结构也是不可缺少的,而掺杂剂即可胜此任。塑料材料具有导电性的第一个条件是它必须具有共轭的π电子体系,第二个条件是它必须经过化学或电化学掺杂,即通过氧化还原过程使聚合物链得到或失去电子。研究进展表明,人们能够生产出导电性超过铜的塑料,以及在室温下导电性超过其他任何材料的塑料。[3]
保持在一个本征态中,电子运动不受到“阻力”,只是当原子振动、杂质缺陷等原因使晶体势场偏离周期场,使电子运动发生碰撞散射,从而对晶体中电子的自由程给出了正确的解释。一般金属的电阻是由于晶格原子振动对电子的散射引起的。散射概率与原子位移的平方成正比,在足够高的温度下与温度T成正比;在低温下,只有那些低频的晶格振动,也就是长声学波,才能对散射有贡献,随着温度降低,有贡献的晶格振动模式的数量不断减少,呈现出金属电阻率在低温极限将随之变化。在费米统计和能带论的基础上,发展了金属电导的现代理论。其电导率σ在1护9一‘cm-1以上。 根据欧姆定律,金属中的电流密度j正比于电场强度E。金属的导电性与温度有关。通常情况下,金属电阻率正比于温度T。在低温时,许多金属材料的电阻率随温度按T规律变化。在极低温的液氦温度范围,含有微量磁性杂质的稀磁合金材料大都在电阻随温度变化曲线上出现极小值。金属是一个良好的导热体。Zui早的金属导电理论是建立在经典理论基础上的特鲁德一洛伦兹理论。假定在金属中存在有自由电子,它们和理想气体分子一样,服从经典的玻耳兹曼统计,在平衡条件下,它们在不停地运动,但平均速度为零。有外电场存在时,电子沿电场力方向得到加速度a,从而产生定向运动,电子通过碰撞与组成晶格的离子实现能量交换,而失去定向运动,在一定电场强度下,有一平均漂移速度l [2] 。根据经典理论,金属中自由电子对热容量的贡献应与晶格振动的热容量可以相比拟,在实验上并没有观察到,这个矛盾在认识到金属中的电子应遵从量子的费米统计规律以后得到了解决。正是为了解决这个矛盾,结合量子力学的发展,开始系统研究电子在晶体周期场中的运动,从而逐步建立了能带理论。按照能带理论,在严格周期性势场中运动的电子,